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Abstract  Karhunen-Loeve transform (KLT)  is by energy preserving transformation that pack maxi- 
the optimal linear transform for coding images un- mum information on a minimum number of samples. 
der the assumption of the stationarity. For images (b). Vector quantization of the input data by taking 
composed of regions with widely varied local statis- advantage of image redundancy to define a code-book 
tics, Dony and Haykin proposed a new transform cod- for image blocks. 
ing method called optimally integrated adaptive learn- 
ing (OIAL),  in Which a number Of  localized KLTs 
are adapted to regions with roughly the Same statis- 

Among the transform coding techniques, the 
Karhunen-Loeve transform (KLT) is considered to 

tics. The new transform Coding method is shown to be better than other linear transforms in the mean 
be SUPem'or to the tranditional KLT. However, the square error sense. This is because it employs the 
performance O f  oIAL depends On an estimate O f  the 
global principal components O f  the which is not 

second-order statistics of the input data. 
KLT suffers from two problems: 

However, 
it requires large 

only computationally expensive but also impractical computation effort, and the covariance matrix of the 
in Some cases. Another Problem of OIAL is that the input data might be singular or near singular. As- 
mean vector in each region as not taken into account, suming the data can be modelled = a first-order stam 
which is required to  define a local PCA. I n  this Paper, tionary Markov model, the discrete cosine transform 
we proposed an improvement over the OIAL which re- (DCT) has been shown to perform as well as the 

an optimal soft-competition learning algorithm called implemented as a fast algorithm, the computational 
'neural gas'. The mean vector in each region is also complexity of the KLT is highly reduced. But since 
incorporated. Experiments show a better Performance not d l  images can be modelled as a Markov model, a 
over OIAL.  better way to implement the KLT on such image data 

has to be found [4]. In [5], a neural model approach 
to perform adaptive calculation of the principal com- 1. Introduction 

places the winner-take-all (wTA) based by Karhunen-Loeve transform. Because the DCT can be 

Because digital images require large amount of Ponents of the covariance matrix is Proposed* 
data to represent, image compresson is needed in or- 
der to store and transmit images economically. Many However, the assumption upon which the condi- 
image compression techniques and standards have tion for optimality has been based can be called into 
been proposed. Artificial neural networks have been question. Specifically, the use of global statistics for 
applied in the area of digital signal processing and generating an optimal coding scheme may not be ap- 
more recently in data compression for image cod- propriate. The use of adaptation in many compres- 
ing systems. Neural network models have shown sion techniques has resulted in significant improve- 
great capability in providing redundancy reduction ments in performance. While these improvements 
and data compression of sensory data. This capabil- clearly indicate that adaptive processing is of merit, 
ity can be exploited to perform image coding in two there has been inadequate study into the optimdity 
different ways: (a). Transform coding of the input of the adaptation criterion. Dony and Haykin pro- 
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posed a new approach to adaptive transform coding 
based on a mixture of local principal component pro- 
jections, called optimally integrated adaptive learn- 
ing (OPAL) [?’] which involves two procedures: par- 
tition a data set into a number of nonoverlapping 
regions and each region is represented not by its cen- 
tral point as in clustering but by a localized lin- 
ear subspace. Their results demonstrated that the 
OIAL method outperforms the globally optimal lin- 
ear transform (KLT). 

The performance of Dony and Haykin’s algorithm 
seriously depends on the initial condition. It was re- 
quired that the initial set of transformation matrices 
should be representative of the distribution space of 
the training data, otherwise the resulting partition 
would be suboptimal due to the “underutilization” 
problem. In [7], an estimate of the global principal 
components of the data was first made and then a 
small amount of random variation was added to each 
class. On the other hand, the definition of OIAL is 
intuitive in the sense that the centroid vector in each 
region, which is required to define a local PCA, is 
ignored. To overcome the problems, in this article 
we propose an improved mixture model in which the 
data manifold is partitioned by generalizing an op- 
timal clustering algorithm called ‘neural gas’ [8]. To 
guarantee the optimality of the mixture model, we ex- 
plicitly calculate the mean vector in each region and 
incorporate it into the coding and decoding process. 

2. A Mixture Model of Local Principal 
Component Representation 

Consider a random variable x in RL with finite 
covariance matrix E. Without loss of generality, x is 
assumed to have zero mean. The r principal compo- 
nents of x’s distribution are the r orthogonal direc- 
tions in RL that capture the greatest variation in the 
distribution. A linear neuron model with weight vec- 
tor w,  input sample x and output y = wTx can learn 
the largest principal component [l-21, which can also 
be achieved by optimizing the criterion 

minimize J = E[$] (1) 

where E stands for expectation. An additional con- 
straint such as llwll = 1 is necessary to stabilize the 
learning rule derived from eqn (1). A stochastic ap- 
proximation solution of (1) leads to the famous Oja’s 
rule 

Wt+l = Wt + Pt(YX - Y2Wt) (2) 

where pt is the learning rate a t  iteration t .  

A number of unsupervised learning algorithms for 
extracting multiple principal components or their 
subspace have been proposed, usually developed from 
the objective (1) and the following consideration: the 
second largest principal component also statisfies the 
minimal reconstruction property with restriction that 
the second principal component direction must be 
orthogonal to the first component direction, and so 
on for the remaining principal component directions. 
Among many efficient learning algorithms, the Gen- 
eralized Hebbian Algorithm (GHA) [3] is well-known. 
For a single-layer network with M linear output units, 
L x M ma.trix W = [w( l ) ,  . . . , w(M)] transforms in- 

The learning rule based on GHA is 
put x to output y = [Yl,. . ’ ,  yM]T, lJm = wrr‘(m)x. 

Wt+l = Wt + PdYXT - LT[yyT]Wt) (3) 

where LT stands for an operator that sets all elements 
on or above the diagonal of its matrix argument to 
zero. 

The PCA or subspace method provides a contin- 
uous distributed representation. Although impor- 
tant, an inherent weakness of only global linear trans- 
form prevents its further applications. In data anal- 
ysis, clust,ering or vector quantization (VQ) tech- 
niques provide a nonlinear discrete representation, 
which use a number of local Voronoi centers to  rep- 
resent input vectors. For a set of M reference vec- 
tors, { v ( l ) , . . - , v ( M ) } ,  an input vector x is consid- 
ered being best matched by one of its reference vector 
v(k) in the sense that an appropriately defined distor- 
tion measure such as the squared Euclidean distance 
(Ix - v(k)1I2 is minimal. 

The ‘neural gas’ algorithm proposed in [8] is an ef- 
ficient method for solving VQ. In a neural gas model, 
reference ,vectors v(m) are associated with connec- 
tion weights of neural units and adapted by the rel- 
ative distances between the neural units within the 
input space. Each time an input x is presented, 
we first make an ordering of the elements of a set 
of distortions E, = (11. - v(m)ll,rn = l , . . . , M }  
and then determine the adjustment of reference vec- 
tor v(m). For a given data vector x, we determine 
the “neighborhood-ranking” (&(ma), E x ( m l ) ,  . . ., 
E x ( m ~ _ 1 ) )  of the distortion set, which means v(mo) 
is closest to x, v(m1) second closest to x, v(mk), k = 
0 , .  . . , M -. 1, the reference vector for which there are 
k vectors v(j) with IIx - v(j)ll < IIx - v(mk)ll. Then 
each neuron adjusts its weight via a dynamical learn- 
ing rate which depends on the ranking of its repre- 
sentation capability. Denote the number k associated 
with each neural unit m by k,. The following learn- 
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ing rule is the simple neural 'gas' algorithm in [SI. 

vt+l(m) = v t (m)  + pthx(km)(x - vt(m)) 

m = l ; . . ,M (4) 

where pt is the learning rate, hx(k,) is 1 for km = 0 
and decays to zero for increasing km with a character- 
istic decay constant. Algorithm (4) has a number of 
advantages over other clustering algorithms, includ- 
ing fast convergence and very small distortion errors 
PI. 

k = l , . . . ,  K. In other words, we make a ranking 
(ELko), ELk1), . . . , ELk"-')) of the reconstruction error 
set, with i ( ' O )  being closest to x, j E ( k l )  being second 
closest to x, i ( k l ) ,  1 = 0, . . . , K - 1 being the recon- 
structed vector for which there are kl vectors i ( j )  

with IIx - i ( j ) l l  < IIx - i(kl)ll. Specifically, each sub- 
space adjusts its projection via a dynamical learning 
rate which depends on the ranking of its reconstruc- 
tion error. Denote the number d associated with each 
projection k by dk, then (4) can be extended as: 

Wifi = Wik)  + pthx(dk)(y(')(x - dk))T 
While PCA provides a global, linear transform of 

the data, clustering or VQ offers a local, nonlinear -Lqy(k)y(")]W,(") (8) 
mapping between the data and the representation. In 
practice, these two basic forms of data representation 
can be combined in an appropriate way to establish 
some kind of nonlinear distributed representations. A 
mixture model of local PCA is such a combination, 
which partitions the data set into a number of K re- 
gions and each region Ck is represented by a respec- 
tive Mk-dimensional linear subspace dk). In other 
words, each input vector is assigned to the most ap- 
propriate partition and then represented by the Mk 
basis vectors of the region. Specifically, this repre- 
sentation can be expressed as 

y(k) = w ( ~ ) ~ ( X  - %('I), if x E ck, k = 1 , .  . . , K 
(5) 

where W(k) is an L x Mk matrix whose columns are 
the Mk principal components of the partition Ck, dk) 
is the mean vector of region C k .  The reconstructed 
vector dk) is calculated as 

i ( k )  = W(k)y(k) + j & W  , if x E Ck, k = 1 , . . . , K  (6) 

where hx(dk) is 1 for dk = 0 and decays to zero for 
increasing d k .  In the simulations we choose the dy- 
namical adaptation step hx(dk) = eq(-dk/X), with 
X being a decay constant, which is same as in the 
original 'neural gas' algorithm [8]. 

3. Learning Adaptive Local Linear 
Transforms for Image Coding 

In [7], an unsupervised learning algorithm called 
optimally integrated adaptive learning (OIAL) was 
proposed that combines both principal components 
extraction and competitive learning. The algorithm 
produces a number of linear transforms which are lo- 
cal to different regions. OIAL can be outlined as 
follows: 

1. Initialize K transformation matrices 
{ W ( l ) , W ( 2 ) , . . . , W ( ~ ) } .  

2. For each training input vector x: 
The reconstruction error 

0 classify the vector based on the subspace 
classifier 

measures the distance between x and the subspace where Q(i)  = W(i)W(i)) .  

0 update transformation matrix W(i)  accord- L ( k )  , where P(') = 1 - W(k) W(k)T is the projection 
matrix of dk). E ( k )  can be termed as reconstruction 
distance [9]. 

ing to  

w(i) = W(i)  + CrZ(x, W(i ) )  (10) 
Input space can then be partitioned by a competi- 

tion among these PCA type representations on the 
basis of the reconstruction distances E, = {Ilx - 
i (k ) l12 ,k  = l , . . . , K ) ,  I( is the number of sub- 
spaces. Each time an input x is presented, we first 
make an ordering of the elements of E, and then 
determine the adjustment of each subspace L(", 

where Z(x, W ( i ) )  is an appropriate adapta- 
tion algorithm for learning the M principal 
components of {xlx E Ci}. 

3. Repeat for each training vector until the trans- 
formations converge. 
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OIAL is a mixture model of local PCAs, which 
concurrently perform WTA competition and princi- 
pal component projections. Intuitively, WTA com- 
petition has a number of disadvantages, for example, 
the underutilization problem. In [7], the initial set of 
transformation matrices are required to be represen- 
tative of the distribution space of the training data. 
If some of the W(i)'s were to be initialized to values 
corresponding to regions outside of the distribution 
space, then they would never be used. Hence, the 
resulting partition would be clearly suboptimal. To 
overcome this problem, [7] proposed to first make an 
estimation of the global principal component of the 
data distribution, then to each class a small amount 
of random variation is added as the initial transfor- 
mation matrix. This not only requires extra com- 
putation, but also makes it hard to demonstrate the 
soundness. 

Figure 1: IUodular architecture of adaptive transform 
coding. Input data are blocks of L x L pixels. The kth 
localized transformations KLTk consists of M basis 
images of size L x L,  and output is an M dimensional 
vector yk. The coefficient vector to be transmitted is 
selected by comparing the reconstruction distances. 

Another problem of OIAL is that it does not con- 
sider the mean vector in each region, which is required 
to define a local PCA or KLT. Though a mixture 
model of local PCA may be introduced in different 
ways, the local linear transforms algorithm in [9] is 
preferred here, which can be outlined as follows: 

reference vectors %(", k = l , .  . . , are obtained. 
Each %(k) can be considered as the centroid of 
the corresponding region c ( k ) .  

2. Initialize K matrices {W(l), W ( 2 ) ,  . . . , W ( K ) }  

3. For each training input vector x: 

using random values. 
1. Partition the input space RL into K disjoint re- 

2. Compute the local covariance matrices (a) Calculate the reconstruction distances 
Ex = {IIx - d k ) 1 I 2 , k  = l , . . . , K ) ,  where 
x ( k )  = 

(b) TJpdate each transform matrix W(') ac- 
cording to the algorithm (8). 

gions { ~ ( l ) ,  . . . , dK)} 

= E[(x-Ex)(x-Ex)~Ix E C(')]; k = 1 , .  * . , K + W(")W("T(x - 2W). 
(11) 

and their eigenvectors e,(k), 1 = 1,. - a ,  L. Rela- 
bel the eigenvectors so that the corresponding 
eigenvalues are in descending order Ay) > X i k )  > 

, 

4. If converged, stop; Otherwise, go to  Step 3. 
. . . > A y .  

3. Choose a target dimension M and retain the M 
leading eigenvectors for the encoding. 

Based on the above general scheme, [9] proposed 
to partition the input space by VQ and discuss two 
distortion measures for guiding the partition process. 
The optimal projection partition [9] is difficult to 
adaptively proceed as it needs to estimate the covari- 
ance matrix in each partition. Instead, we prefer the 
suboptimal one, called Euclidean partition [9], which 
builds a VQ on the basis of Euclidean distance. From 
our discussion of the mixture model in the last sec- 
tion, our learning algorithm for implementing local 
linear transforms can then be summarized as follows: 

1. Applying algorithm (8) on the training data to  
partition the input space. After convergence, K 

After training is complete, our algorithm produces 
K transformation matrices { W ( l ) ,  W ( 2 ) ,  . . - , W ( K ) }  
and each matrix converges to the localized KLT for 
the corresponding data class. K reference vectors 
dk) approximately represent the centroids of the par- 
titioned data regions. For encoding images, a modu- 
lar architecture similar to the OIAL is shown in Fig.1. 
In the system, a number of I( localized KLT modules 
consists of M basis images of dimension L x L. The 
inner product of each basis image with input image 
block (corresponding reference vector subtracted) re- 
sults in M coefficients per module, which is repre- 
sented as the M-dimensional vector yi. To choose 
the class and the corresponding coefficient vector to 
be transmitted, we can simply compare the recon- 
struction distance IIx - dk) 11 and select the module 
with minimal distance. 
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Figure 2: Original Lena image. 

The message is decoded using the same set of 
transformations and reference vectors. The class in- 
dex is used to choose the class for the inverse trans- 
formation and reference vector, The resulting recon- 
structed image block x is then calculated. 

4. Simulations 

We have performed a set of experiments of im- 
age coding based on the mixture models of local 
KLT. The first image is the typical Lena image with 
256 x 256 pixels and 0 - 255 gray levels, as shown 
in Fig.2. During training, the image was divided into 
blocks of 8 x 8 pixels for an input dimension of L = 64. 
The blocks were randomly sampled and presented to 
the network. Training proceeded with 50,000 ran- 
dom samples. The learning parameter ,U in (8) is 
initially set to 0.5 and then dynamically decreases to 
0.05. The decay constant A in the dynamical adapta- 
tion step h ~ ( & )  changes from 20 to 0.01. The time 
dependence for p and X is taken as the same form 
as g ( t )  = g i ( g f / g i ) t / t - -  [SI, in which t is the cur- 
rent adaptation step, t,,,, is a predefined maximum 
adaptation step, i.e., t,,,, = 50,000 in our experi- 
ments. The subscripts i and f stands for initial value 
and final value, respectively, i.e., pi = 0.5, p j  = 0.05, 
xa = 20, x j  = 0.1. 

During decoding, the image was also divided into 
8 x 8 nonoverlapping blocks, which were then trans- 
formed by the previously computed system into a 
set of coefficients, quantized and then transformed 
back into image blocks. We first experimented with 
the OIAL coding algorithm, which has 128 classes 
and four coefficients per class. Using an estimate 
of the global principal components of the data with 
a small amount of random variation added to each 
class as the initial set of transformation matrices, 
OIAL algorithm yields a decoded image as shown in 
Fig.3(a), with PSNR=29.6. If we randomly initial- 
ize the W(i)’s by small random values, the decoded 
image will become poorer, as illustrated in Fig.S(b), 

Figure 3: Lena image with OIAL coding for 128 
classes and four coefficients per class. (a). Initializa- 
tion of transform matrices by estimate of the global 
PCA, PSNR=29.6 (b). Randomly initialization of 
the transform matrices, PSNR=27. 

with PSNR=27. 

In our experiment, we use the peak signal to noise 
ratio (PSNR) in dB given as 

2552 
MSE 

PSNR = 1010g,,[-] 

to  measure the decoded image quality, where 255 
is the maximum intensity (for 8-bit intensity) and 
MSE is the mean square error between the origi- 
nal image and decoded image. In defining the av- 
erage bits per pixel, we simply suppose that each 
local PCA’s coefficient has been coded with 8 bits. 
Another bits per pixels is needed to trans- 
mit the class index. Therefore, for the 8 x 8 image 
blocks and 128 classes, the average bits per pixel is 
- :x8 - 0.36 bits/pixel for 2 coefficients per 
class, and E + ‘ o f z x ~ 8  = 0.61 bits/pixel for 4 coef- 
ficients per class, and so on. The optimal coding of 
class information is not considered here, which can 
be found in [5]. 

;2; + log 128 - 

The image provided in Figs.4(a) and (b) show the 
decoding quality of our learning algorithm for the 
cases of two coefficients per class and four coefficients 
per class, respectively. The initial transform matrices 
W(i)’s are all randomly initialized with small values 
for each elements and the decoded image quality is 
clealy superior to  the image in Fig.3(b) and slightly 
better than the image in Fig.S(a). From Fig.4 we can 
also find that increasing the number of coefficients per 
class yields a higher peak signal to  noise ratio. How- 
ever, as is pointed out in [7], there is a limit to  the 
improvement realized through increasing the number 
of coefficients alone because of the resulting increase 
in quantization error. The results of aplying our al- 
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Figure 4: Lena image coded with our learning al- Figure 6: F16 image coded with our learning algo- 
gorithm for 128 classes, with (a). two coefficients rithm for 128 classes, with (a). two coefficients per 
per class, PSNR=30.7; and (b). four coefficients per class, PSMR=29; and (b).four coefficients per class, 
class, PSNR=32. PSNR=30.3. 

Figure 5: Original F16 jet fighter image. 

gorithm to encode an F-16 jet fighter image Fig.6 are 
demonstrated in Fig.7 (a) and (b), corresponding to  
the cases of two coefficients per class and four CO- 

efficients per class, respectively. This result show no 
significant difference between the two coefficients and 
four coefficients, from both their PSNR’s and subjec- 
tive quality. 

5. Conclusion 

In this paper, we proposed an approach to adap- 
tive compression on the basis of a mixture of lo- 
cal PCA model. The learning algorithm improves 
the performance of the optimally integrated adaptive 
learning (OIAL) system. The architecture of the en- 
coding scheme is similar to that of OIAL, which con- 
sists of a number of modules corresponding to local- 
ized PCAs. Each module in the system specializes in 
a class of data and perform a linear transformation 
on its class data using the basis images. The train- 
ing involves concurrently making ranks of the “re- 
construction distances” calculated from the localized 
PCAs and dynamically performing PCA learning for 
different modules. The simulation results have shown 

that our algorithm outperforms the OIAL. 
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